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Abstract

A two-component local/nonlocal constitutive model for (macroscopically) inhomogeneous linear elastic materials

(but constant internal length) is proposed, in which the stress is the sum of the local stress and a nonlocal-type stress

expressed in terms of the strain difference field, hence identically vanishing in the case of uniform strain. Attention is

focused upon the particular case of piecewise homogeneous material. The proposed model is thermodynamically

consistent with a suitable free energy potential. It constitutes an improved form of the Vermeer and Brinkgreve [A new

effective nonlocal strain measure for softening plasticity. In: Chambon, R., Desrues, J., Vardulakis, I. (Eds.), Locali-

zation and Bifurcation theory for Soils and Rocks. Balkema, Rotterdam, 1994, pp. 89–100] model, and can also be

considered derivable from the Eringen nonlocal elasticity model through a suitable enhancement technique based on the

concept of redistribution of the local stress. The concept of equivalent distance is introduced to macroscopically account

for the further attenuation effects produced by the inhomogeneity upon the long distance interaction forces. With the

aid of a piecewise homogeneous bar in tension, a portion of which degrades progressively till failure, it is shown that––

under a suitable choice of a material constant––the solution procedure exhibits no pathological features (numerical

instability, mesh sensitivity) in every degraded bar condition, including the limit idealized stress-free condition of the

failed bar.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the framework of nonlocal (integral type) elasticity (Kr€oner, 1967; Edelen and Laws, 1971; Eringen

and Edelen, 1972; Rogula, 1982), Eringen and co-workers (Eringen and Kim, 1974; Eringen et al., 1977;

Eringen, 1978; Eringen, 1979; Eringen, 1987) proposed a simplified theory for linear (macroscopically)

homogeneous isotropic elasticity, which differs from the classical one in the stress–strain constitutive

relation only, whereas the equilibrium and compatibility equations remain unaltered. In this way, the
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mentioned authors were able to show that the crack-tip stress singularity, predicted by classical elasticity,

does not arise making use of the nonlocal theory (see also Artan and Yelkenci, 1996; Zhou et al., 1999).

Numerous subsequent studies were devoted to the Eringen nonlocal elasticity model. Altan (1989a) and

Altan (1989b) addressed questions as the existence and uniqueness of the elasticity boundary-value problem
solution; Wang and Dhaliwal (1993a) formulated a reciprocity relation for nonlocal polar continua. Similar

questions were also addressed by Altan (1991) and Wang and Dhaliwal (1993b) within nonlocal thermo-

elasticity. Polizzotto (2001) extended the classical variational principles to nonlocal elasticity. Ba�zant and
Jir�asek (2002) reviewed nonlocal elasticity and in particular the applications of the Eringen model and of its

enhanced versions to plasticity and damage mechanics. Pisano and Fuschi (2003) provided a closed form

solution for a nonlocal elastic bar in tension. Jir�asek and Rolshoven (2003) made a critical comparison

of the existing integral models in the domain of plasticity and softening materials.

A phenomenological nonlocal-type elasticity stress–strain law is as a rule required to satisfy the basic
requisite to provide a uniform stress field whenever the strain field is uniform, just like in the case of local-

type (homogeneous) elastic material. Such a material model proves to be unable to capture surface physics

phenomena, that is, the complex modifications that the microstructure undergoes in the vicinity of the

boundary surface (boundary surface microscale effects), which however are usually considered (and are

considered here) secondary for a phenomenological description of the constitutive law.

The previously mentioned Eringen model satisfies the above requisite in the case of infinite domain, but

not in the case of finite domain due to the boundary surface macroscopic effects (the finite support of the

influence function exceeds the integration domain). The latter effects are in general accompanied by
numerical instability and mesh sensitivity in the solution of boundary-value problems.

Various enhancement rules have been adopted in the literature to render Eringen model capable to

preserve corresponding uniform stress/strain fields (Ba�zant and Jir�asek, 2002; Jir�asek and Rolshoven,

2003). The most popular is that suggested by Pijaudier-Cabot and Ba�zant (1987) in the context of damage

mechanics, consisting in rescaling the influence function, which then loses symmetry.

The symmetry of the influence function constitutes an important pre-requisite for computational, as well

as for theoretical reasons (beneficial influences on material stability, existence of extremum principles),

(Ba�zant and Jir�asek, 2002; Polizzotto, 2001). A symmetry-preserving enhancement rule, proposed by Po-
lizzotto (2002) and by Borino et al. (2002) and Borino et al. (2003), consists in the addition of a suitable

inhomogeneous local constitutive component to the nonlocal one in the vicinity of the boundary surface.

This two-component local/nonlocal constitutive model differs from analogous models of the literature,

which are characterized by the homogeneity of the added local constitutive component (Ba�zant and Chang,

1984; Altan, 1989a; Vermeer and Brinkgreve, 1994; Str€omberg and Ristinmaa, 1996) (see also Ba�zant and
Planas, 1998; Jir�asek and Rolshoven, 2003). The stabilizing effects induced by the addition of this local

component were studied by Ba�zant and Chang (1984) through the positivity of the Fourier transform of the

modified kernel.
The purpose of the present paper is to propose a nonlocal elasticity model for (macroscopically)

inhomogeneous materials (but constant internal length), in which the stress is the superposition of two

contributions, one coinciding with the local stress, the other is of nonlocal nature, given by a weighing

formula operating on the strain difference. The model exhibits the natural capacity to predict, for a uniform

strain field, the related local stress field. In addition to the elastic moduli and the internal length parameter,

‘, the model contains a material constant that controls the volumetric proportions of the local and nonlocal

constitutive components, and that, in numerical simulations, can be chosen such as to guarantee stability of

the computational procedure. The proposed model constitutes an improvement of the Vermeer and
Brinkgreve (1994) model, with which it coincides within the core domain, that is at points where the

boundary surface influence is vanishing.

For greater completeness, the Eringen nonlocal elasticity model is revised in Section 2 together with

some enhanced forms of it. Then, a simpler form of the proposed model is presented in Section 3, suitable
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to the case of (macroscopically) homogeneous material. In this version, the proposed model includes as a

particular case the previously mentioned two-component local/nonlocal constitutive model (Polizzotto,

2002; Borino et al., 2002; Borino et al., 2003); its similarities with the Vermeer–Brinkgreve model are also

recognized. The related total strain energy is computed and the relevant expression of the Helmholtz free
energy is utilized in order to verify the thermodynamic consistency of the constitutive equation. In Section

4, a suitable form of the free energy potential is used as a starting point for extending the proposed model to

the case of a (macroscopically) inhomogeneous material. In particular, the case of piecewise homogeneous

material is addressed with two or more subdomains. In Section 5, it is argued that inhomogeneity is the

cause of an additional attenuation of the long distance interaction forces between particles located on the

opposite sides with respect to an internal boundary. The concept of equivalent distance is introduced as a

means to account for the augmented attenuation effects. In Section 6 a numerical application to a bar

structure is reported. The conclusions are drawn in Section 7.
1.1. Notation

A compact notation is used, with bold-face letters for vectors and tensors. The �dot� and �colon� products
between vectors and tensors denote the simple and double index contraction operations, respectively, for

instance: u � v ¼ uivi, r : e ¼ rij; eij, r � n ¼ frji; njg, D : e ¼ fDkhijekhg. The subscripts denote Cartesian

components and the repeated index summation rule is to be applied. Cartesian orthogonal co-ordinates

x ¼ ðx1; x2; x3Þ are employed. The symbol :¼means equality by definition. Other symbols will be defined

in the text where they appear for the first time.
2. The Eringen nonlocal elasticity model

For completeness sake, the Eringen model is briefly reviewed in this section, and a few enhanced forms

of it are reminded. In the Eringen model (Eringen and Kim, 1974; Eringen et al., 1977; Eringen, 1987),

the stress–strain relation has the form
rðxÞ ¼ D0 :

Z
V
gðx; x0Þ; eðx0ÞdV 0; ð1Þ
where V is the domain occupied by the material, dV 0 :¼ dV ðx0Þ, D0 is the usual moduli fourth-order tensor

of local (homogeneous) elasticity and gðx;x0Þ ¼ gðx0; xÞ is the influence, or attenuation, function. g is a
(continuous) function of the Euclidean distance, r ¼jj x0 � x jj, that is g ¼ �gðr=‘Þ, where ‘ is the internal

length parameter; it is a positive more or less rapidly decreasing function, such that g ’ 0 for rPR, where
R is the influence distance, radius of the influence sphere RðxÞ centered at x, in general much smaller than

the smallest linear dimension of V . As a rule, g will be taken vanishing for r > R in the following.

g satisfies the normalization condition (obviously independent of x):
Z
V1

gðx; x0ÞdV 0 ¼
Z
RðxÞ

gðx; x0ÞdV 0 ¼ 1; ð2Þ
where V1 is the (convex) infinite domain in which V is embedded. Eq. (2) guarantees that gðx; x0Þ !
dðx0 � xÞ (Dirac delta) for ‘ ! 0, that is, the Eringen model recovers local elasticity for ‘ ! 0.

Several mathematical forms have been suggested for g, like the error function, the bell-shaped function

and the bi-exponential function, (see Eringen, 1987; Ba�zant and Chang, 1984; Polizzotto, 2001; Ba�zant and
Jir�asek, 2002). The bi-exponential influence function, having the form g ¼ ð1=2‘Þ expð�r=‘Þ for r < R, but
g ¼ 0 for r > R ¼ 6‘, in a one-dimensional setting, will be used in all applications to follow.



2386 C. Polizzotto et al. / International Journal of Solids and Structures 41 (2004) 2383–2401
The concept of geodetical distance, rðx; x0Þ, has been suggested by Polizzotto (2001) as the length of the

shortest path joining x with x0 without intersecting the boundary surface, to be used in place of the

Euclidean distance when an obstacle as hole, or crack, is located between x and x0, or more in general

the domain V is not convex (see also Peerlings et al., 2001).
The (adimensional) function
Fig. 1.

‘ ¼ 2 c
cðxÞ :¼
Z
V
gðx; x0ÞdV 0; ð3Þ
which represents the nonlocal counterpart of a unit uniform field in V , is continuous and bounded,

0 < cðxÞ6 1. For the influence functions of common use, cðxÞ admits a plot like that of Fig. 1(b), which

refers to the bi-exponential influence function in a one-dimensional domain, Fig. 1(a), for which

0:56 cðxÞ6 1.

On taking eðxÞ uniform in V , say eðxÞ ¼ �e, Eq. (1) gives
rðxÞ ¼ cðxÞD0 : �e; ð4Þ
where the function cðxÞ interprets the amount and distribution of the mentioned boundary surface

macroscopic effects that make rðxÞ nonuniform in (4). These effects turn out to be vanishing at all points
x 2 Vc � V , ðVc ¼ core domainÞ, where RðxÞ does not exceed oV , hence by (2) cðxÞ ¼ 1; but they are

nonvanishing at points x closer to oV , where RðxÞ exceeds the boundary surface, hence by (2) cðxÞ < 1.

From (4) follows that the Eringen model (1) does not comply with the basic requisite usually required for

a phenomenological nonlocal model, that is, to provide uniform stress in the presence of uniform strain. As

a remedy to this drawback, Pijaudier-Cabot and Ba�zant (1987) suggested to replace gðx; x0Þ of (1) with the

rescaled function
g�ðx; x0Þ ¼ gðx; x0Þ=cðxÞ; ð5Þ
which however is not symmetric.
An alternative remedy saving the symmetry was suggested by Polizzotto (2002) on the basis of long

distance energy redistribution considerations. More simply, one can observe that the integrand of (1),

rewritten in the equivalent form
sðx0; xÞ :¼ gðx0; xÞD0 : eðxÞ; ð6Þ
represents the specific nonlocal stress induced in x0 by the strain eðxÞ (the adjective ‘‘specific’’ is used to

signify that sðx0; xÞ has the dimension of a stress divided by a volume); also, by (3), the integral of (6) with

respect to x0 2 V is
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Plots representing: (a) the bi-exponential influence function in one-dimensional (infinite) domain, g ¼ ð1=2‘Þ expð� j x0 � x j =‘Þ,
m, R ¼ 12 cm; (b) the related function cðxÞ, Eq. (3), for 06 x6L.
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Z
V
sðx0; xÞdV 0 ¼ cðxÞD0 : eðxÞ; ð7Þ
which coincides with the local stress D0 : eðxÞ in the core domain Vc, where cðxÞ ¼ 1. This result can be

macroscopically interpreted stating the following: in an idealized process leading from the local to the

nonlocal constitutive model, the local stress D0 : eðxÞ redistributes completely within the influence sphere at

points x 2 Vc, but only in part at points x closer to the boundary oV where cðxÞ < 1 and where thus the

nonredistributed local stress, ½1� cðxÞ�D0 : eðxÞ, there remains attached to x. In other words, Eq. (1) is to

be considered the right phenomenological stress–strain law in the case of infinite domain, but in the case
of finite domain is to be replaced by the enhanced law:
rðxÞ ¼ ½1� cðxÞ�D0 : eðxÞ þD0 :

Z
V
gðx; x0Þeðx0ÞdV 0; ð8Þ
which accounts for the mentioned boundary surface macroscopic effects. The enhanced law (8) distin-

guishes from (1) for the added inhomogeneous local part, characterized by the moduli tensor DðxÞ ¼
½1� cðxÞ�D0, which is nonvanishing in the boundary layer, V n Vc, but vanishing in the core domain Vc.

Independently, Borino et al. (2002) and Borino et al. (2003) adopted an integral formula similar to (8)

within the context of damage mechanics.
3. Strain-difference-based nonlocal model: homogeneous material

Continuing to have in mind a (macroscopically) homogeneous elastic material, an alternative to the

Eringen model (1) is here proposed in the form
rðxÞ ¼ D0 : eðxÞ þ aD0 :

Z
V
Gðx; x0Þ½eðx0Þ � eðxÞ�dV 0; ð9Þ
where a is an adimensional scalar constant and Gðx; x0Þ is an influence function satisfying (2). This model

belongs to the class of two-component local/nonlocal models; it grounds on the basic idea by which the

nonlocal stress is expressed by the addition to the local stress of a nonlocal stress depending on the strain

difference field, such that (9) naturally gives uniform stress for uniform strain for whatever domain V .
With the position:
CðxÞ :¼
Z
V
Gðx; x0ÞdV 0; ð10Þ
Eq. (9) can also be rewritten as
rðxÞ ¼ ½1� aCðxÞ�D0 : eðxÞ þ aD0 :

Z
V
Gðx; x0Þeðx0ÞdV 0; ð11Þ
which coincides with (8) if Gðx; x0Þ � gðx; x0Þ and a ¼ 1. This implies that the proposed strain-difference-

based model can also be considered derivable from the Eringen model (1) through the previously intro-

duced symmetry-saving enhancement procedure (by which (8) has been derived from (9)).

Since CðxÞ ¼ 1 in the core domain Vc related to G, follows that, in this Vc, Eq. (11) simplifies as
rðxÞ ¼ D0 : ð1
�

� aÞeðxÞ þ a
Z
V
Gðx; x0Þeðx0ÞdV 0

�
; ð12Þ
which is formally as the Vermeer and Brinkgreve (1994) model of common use in plasticity as an effective
strain localization limiter (see e.g. Jir�asek and Rolshoven, 2003). However, the latter model does not satisfy

the requisite to provide uniform stress under uniform strain, (unless the rescaled influence function (5) is
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employed, but then symmetry is lost), hence (11) can be viewed as an improved version of the mentioned

Vermeer–Brinkgreve model.

It is worth noting that the total strain energy associated to (11), or (9), can be written in the form:
Fig. 2.
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eðxÞ : ½1� aCðxÞ�D0 : eðxÞdV þ a

2

Z
V

Z
V
eðxÞ : Gðx; x0ÞD0 : eðx0ÞdV 0 dV ; ð13Þ
which is assumed positive definite (Polizzotto, 2001; Ba�zant and Jir�asek, 2002). Another form for (13),

useful for the developments to follow, can be derived by introducing a (symmetric) primitive influence

function, say gðx; x0Þ, such that
Gðx; x0Þ ¼
Z
V
gðx; zÞgðz; x0ÞdV ðzÞ 8x; x0 2 V ; ð14Þ
that is, Gðx; x0Þ represents the (symmetric) weighed influence function associated to gðx; x0Þ. It can be verified

that, if gðx; x0Þ is an influence function satisfying (2), then Gðx; x0Þ given by (14) also satisfies (2). At points
x 2 V sufficiently far from the boundary oV , Gðx; x0Þ as function of x0 exhibits a fixed shape like gðx; x0Þ but
possesses a greater influence distance, as shown in Fig. 2(a), whereas is affected by the boundary surface

oV at points x closer to the latter, Fig. 2(b).
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Let the nonlocal strain, beðxÞ, be defined by using the primitive influence function gðx; x0Þ, that is,
beðxÞ ¼ RðeÞðxÞ :¼
Z
V
gðx; x0Þeðx0ÞdV 0: ð15Þ
Then, substituting (14) in (13), one easily obtains
W ¼ 1

2

Z
V
feðxÞ : ½1� aCðxÞ�D0 : eðxÞ þ beðxÞ : aD0 : beðxÞgdV ð16Þ
the integrand of which can be identified with the functional
wðe;RðeÞ; xÞ :¼ 1

2
e : ½1� aCðxÞ�D0 : eþ

1

2
RðeÞ : aD0 : RðeÞ ð17Þ
representing the relevant Helmholtz free energy density at the generic point x 2 V . Following Polizzotto
(2001) and observing that the integral operator R is self-adjoint because of the symmetry of the ker-

nel gðx; x0Þ, the thermodynamically consistent stress corresponding to (16) can be found to be (state

equation):
r ¼ ow
oe

þR
ow

oRðeÞ

� �
in V ; ð18Þ
which can be shown to coincide with (11), or (9). This means that the stress (9), or (11), is thermody-

namically consistent with the free energy potential (17), provided Gðx; x0Þ complies with (14).

Note that the knowledge of the primitive influence function, gðx; x0Þ, is not required by the stress–strain

law (9), or (11), hence the weighed influence function, Gðx; x0Þ ¼ RðgÞðx; x0Þ, Eq. (14), can be there specified
independently, but then the thermodynamic consistency with (17) is generally lost.
4. Strain-difference-based nonlocal model: inhomogeneous material

In this section, an inhomogeneous nonlocal elastic material (but with constant internal length) occupying

the domain V is considered, which is characterized by a local moduli tensor, DðxÞ, symmetric and positive

definite everywhere in V . The material inhomogeneity is conjectured to constitute the source of further
attenuation effects on the long distance particles interaction forces. Since no experimental indication seems

to be available, the hypothesis is here introduced that the increased attenuation effects may still be ac-

counted for by means of a symmetric attenuation function gðx; x0Þ ¼ �gðr=‘Þ, but using, in place of r,
a suitably incremented equivalent distance, req ¼ reqðx; x0Þ > rðx; x0Þ, (see Section 5).

By extrapolation of the homogeneous material case, let the free energy w be taken in the following form:
wðe;RðeÞ; xÞ :¼ 1

2
e : Dð0ÞðxÞ : eþ a

2
RðeÞ : DðxÞ : RðeÞ; ð19Þ
where Dð0ÞðxÞ is an unknown local-type moduli tensor and a is some scalar constant. By (18) and using the

notation be ¼ RðeÞ of (15), one has
rðxÞ ¼ Dð0ÞðxÞ : eðxÞ þ a
Z
V
gðx; zÞDðzÞ : beðzÞdV ðzÞ; ð20Þ
which, remembering the integral expression of be in (15), can also be written
rðxÞ ¼ Dð0ÞðxÞ : eðxÞ þ a
Z
V
kðx; x0Þ : eðx0ÞdV 0; ð21Þ
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where kðx; x0Þ denotes the material nonlocal moduli tensor, defined as
kðx; x0Þ :¼
Z
V
DðzÞgðz; xÞgðz; x0ÞdV ðzÞ; ð22Þ
where gðz; xÞ ¼ �gðreqðz; xÞ=‘Þ with reqðz; xÞ to be specified later on (Section 5).

On the other hand, since (21) must give rðxÞ ¼ DðxÞ : �e for any uniform strain field �e, one easily obtains

from (21):
Dð0ÞðxÞ ¼ DðxÞ � aKðxÞ 8x 2 V ; ð23Þ

where
KðxÞ :¼
Z
V
kðx; x0ÞdV 0: ð24Þ
Therefore, the stress–strain relation (21) takes on the form:
rðxÞ ¼ ½DðxÞ � aKðxÞ� : eðxÞ þ a
Z
V
kðx; x0Þ : eðx0ÞdV 0 ð25Þ
or, equivalently,
rðxÞ ¼ DðxÞ : eðxÞ þ a
Z
V
kðx; x0Þ : ½eðx0Þ � eðxÞ�dV 0: ð26Þ
This nonlocal stress–strain relation is the extension of (9) to inhomogeneous material.
For practical reasons, it is of interest to consider a piecewise homogeneous material domain, and in

particular the case V ¼ VA [ VB, with VA and VB each homogeneous, such that
DðxÞ ¼ DA in VA; DðxÞ ¼ DB in VB; ð27Þ

hence the internal boundary SAB that separates VA and VB from each other constitutes a discontinuity surface

for DðxÞ. Therefore, noting that kðx; x0Þ correspondingly takes on the form
kðx; x0Þ ¼ DAGAðx; x0Þ þDBGBðx; x0Þ; ð28Þ

where
GIðx; x0Þ :¼
Z
VI

gðx; zÞgðz; x0ÞdV ðzÞ; ðI ¼ A;BÞ: ð29Þ
Eq. (26) gives, for x 2 VI , ðI ¼ A;BÞ:
rðxÞ jVI¼ DI : eðxÞ þ a
Z
V
½DAGAðx; x0Þ þDBGBðx; x0Þ� : ½eðx0Þ � eðxÞ�dV 0: ð30Þ
Alternatively, on posing
CIðxÞ :¼
Z
V
GIðx; x0ÞdV 0; ðI ¼ A;BÞ ð31Þ
and noting that Eq. (24) takes on the form
KðxÞ ¼ DACAðxÞ þDBCBðxÞ: ð32Þ

Eq. (30) can also be written
rðxÞ jVI¼ ½DI � aDACAðxÞ � aDBCBðxÞ� : eðxÞ þ a
Z
V
½DAGAðx; x0Þ þDBGBðx; x0Þ� : eðx0ÞdV 0; ð33Þ
which is equivalent to (25).
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From (30), or (33), it is evident that in the case of uniform strain, say eðxÞ ¼ �e in V , the stress turns out to
be piecewise uniform, that is, rðxÞ ¼ DI : �e 8x 2 VI ; ðI ¼ A;BÞ, just like if the material was local in nature.

Eq. (33) can be regarded as derived from an Eringen-type model of the form
rðxÞ ¼ a
Z
V
½DAGAðx; x0Þ þDBGBðx; x0Þ� : eðx0ÞdV 0 ð34Þ
(generalization of (1) for piecewise homogeneous materials) through an enhancement procedure based on
a stress redistribution concept analogous to that used in Section 2 for deriving (8) from (1). Indeed,

the quantity
sðx0; xÞ :¼ a½DAGAðx0; xÞ þDBGBðx0; xÞ� : eðxÞ ð35Þ
represents the specific nonlocal stress contribution at point x0 due to the strain eðxÞ. The integral of sðx0; xÞ
with respect to x0 2 V turns out to be, by (31),
Z

V
sðx0; xÞdV 0 ¼ a½DACAðxÞ þDBCBðxÞ� : eðxÞ: ð36Þ
Phenomenologically, this implies that––through the long distance redistribution processes––the local stress

DI : eðxÞ, ðI ¼ A;BÞ, redistributes completely within V at points x 2 V where a½DACAðxÞ þDBCBðxÞ� ¼ DI ,

but in general a fraction of it, equal to ½DI � aDACAðxÞ �DBCBðxÞ� : eðxÞ cannot be redistributed and re-

mains attached as local stress to x. Eq. (34) is therefore to be replaced by the two-component local/nonlocal
model (33), which accounts for the macroscopic boundary surface effects of either S ¼ oV and SAB.

The results obtained previously in this section can be straightforwardly extended to the case of a domain

V with any number of subdomains, say V ¼ VA [ VB [ � � � [ VM , each subdomain being homogeneous with

moduli tensor DI constant. Repeating the reasoning developed previously, one easily obtains the extended

forms of Eqs. (28), (30), (32) and (33) as follows:
kðx; x0Þ ¼
XM
J¼A

DJGJ ðx; x0Þ; ð37Þ
KðxÞ ¼
XM
J¼A

DJCJ ðxÞ; ð38Þ
rðxÞjVI ¼ DI : eðxÞ þ a
Z
V

XM
J¼A

DJGJ ðx; x0Þ
" #

: ½eðx0Þ � eðxÞ�dV 0 ð39Þ
or also
rðxÞjVI ¼ DI

"
� a

XM
J¼A

DJCJ ðxÞ
#
: eðxÞ þ a

Z
V

XM
J¼A

DJGJðx; x0Þ
" #

: eðx0ÞdV 0; ð40Þ
where GIðx; x0Þ and CIðxÞ are defined as in (29) and (31).

Note that in every core subdomain, that is at points x 2 VI the distance of which is larger than the

influence distance of GI , it is CIðxÞ ¼ 1, whereas CJ ðxÞ ¼ 0 8J 6¼ I and GJ ðx; x0Þ ¼ 0 8x0 2 V and 8J 6¼ I .
Then, correspondingly, Eq. (40) simplifies as in (12), but with D0 and G replaced by DI and GI . This means
that (40), like (11), can also be considered as an improved form of the Vermeer–Brinkgreve model, extended

to piecewise homogeneous materials.
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5. Attenuation effects due to inhomogeneity

The inhomogeneity as source of additional attenuation effects is addressed in this section.

5.1. General

In a domain V of nonlocal elastic material, in which the latter is supposed to undergo continuing

modulus degradation within a subdomain, say V0 � V , the long distance particle interaction forces between

points x 2 V n V0 with those in V0 are nonvanishing in any intermediate degradation state of V0, but van-
ishing in the limit failure condition for the material in V0. This fact, as previously stated, makes it reasonable

to conjecture that a nonlocal material (macroscopic) inhomogeneity may be the source of further attenu-

ation of the long distance particle interaction forces, likely the larger, the higher the inhomogeneity.
In the case of homogeneous material, the influence function gðx; x0Þ ¼ �gðr=‘Þ accounts for the attenu-

ation effects through the Euclidean (or geodetical) distance rðx; x0Þ. In the case of inhomogeneous material,

in the absence of experimental data, the larger attenuation effects can be macroscopically accounted for

making use of some equivalent distance, say reqðx; x0Þ, such that reqðx; x0ÞP rðx; x0Þ 8ðx; x0Þ 2 V , and thus
�gðreq=‘Þ6 �gðr=‘Þ, and in particular reqðx; x0Þ ! 1, hence gðreqÞ ! 0, in the case of complete attenuation.

An equivalent distance like that is defined hereafter.

With reference to the piecewise homogeneous material of Section 4, letPðx; x0Þ denote an (oriented) path

from x to x0 in V , not intersecting the external boundary surface oV , and let pðx; x0Þ be its length. If Pðx; x0Þ
intersects the internal boundary surface that separates the subdomains VI from one another, then pðx; x0Þ
is to be suitably augmented by a fictitious distance simulating the further attenuation of the long dis-

tance nteraction forces (attenuation effects), caused by the inhomogeneities. For this purpose, the inho-

mogeneities can be thought of as attenuation sources lumped at the intersection points of Pðx; x0Þ with

the internal boundary, say xk, ðk ¼ 1; 2; . . . ;mÞ, having curvilinear abscissas sk over the oriented path

Pðx; x0Þ.
Every attenuation source is to be associated with the modulus jump at the related intersection point.

Denoting by g some scalar measure of the moduli tensor D, such that g ¼ 0 if, and only if, D ¼ 0, (for
instance g ¼ ðDijDijÞ1=2=d, where d is an adimensionalizing constant), the augmented distance paðx; x0Þ is

expressed as
paðx; x0Þ :¼ hpðx; x0Þ; ð41Þ

where the attenuation factor hP 1 is a functional of the path Pðx; x0Þ to which it is associated. Hypo-
thetically, h is defined as
h ¼ h½Pðx;x0Þ� :¼ 1þ
Xm
k¼1

Ck
j gþk � g�k jffiffiffiffiffiffiffiffiffiffiffi

gþk g
�
k

p ; ð42Þ
where gþk :¼ gðsk þ 0Þ and g�k :¼ gðsk � 0Þ are the side limit values of gðsÞ at sk and j gþk � g�k j the related

jump; also, the (adimensional) coefficients Ck are a set of constants that characterize the internal boundary

surface as for its attenuation capabilities at points xk. These capabilities of the internal boundary surface

can be represented by means of a surface coefficient, say C, for which no experimental indications are
available, but it can be argued that C is in general inhomogeneous and that––at a fixed point––may depend

on the modulus jump at the same point.

The equivalent distance between the fixed points x, x0 in V is assumed equal to the minimum value of

paðx; x0Þ with respect to all paths Pðx; x0Þ; formally
reqðx; x0Þ :¼ min
fPðx;x0Þg

paðx; x0Þ; ð43Þ
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which cannot be smaller than the geodetical distance, rðx; x0Þ, given by
Fig. 3.

modul
rðx; x0Þ :¼ min
fPðx;x0Þg

pðx; x0Þ: ð44Þ
The minimum operation (43) provides req as the length r of an (in general unique) optimal path, amplified

by the related attenuation factor, namely reqðx; x0Þ ¼ hrðx; x0Þ.
Note that, since paðx; x0Þ and reqðx; x0Þ are independent of the path orientation, then both paðx; x0Þ and

reqðx; x0Þ are symmetric, i.e. reqðx; x0Þ ¼ reqðx0; xÞ.
The influence function g as a function of req, i.e. g ¼ �gðreq=‘Þ, exhibits the same shape as g ¼ �gðr=‘Þ

related to homogeneous material, Fig. 2(a) and (b), whereas as a function of the length r of the optimal

path, that is g ¼ �gðhr=‘Þ, exhibits a shape depending, through h, on the modulus jumps located along the

optimal path. Considering, for instance, a piecewise homogeneous one-dimensional (infinite) domain with a

single modulus jump at x0, and gA ¼ 1 for x < x0, gB 6 1 for x > x0, the equivalent distance from a point x
such that 0 < x0 � x < R, (Fig. 3), is req ¼ h j x0 � x j, where h ¼ 1 for x0 < x0, but h ¼ 1þ C j 1� gB j = ffiffiffiffiffi

gB
p

for x0 > x0. Thus, the shape of the influence curve centered at x depends on the gB value as depicted in Fig. 3,
where the curve branch x0 > x0 is shown to be continuous and to lower with decreasing gB: at the limit for

gB ! 0, it tends to the flat pattern �g ¼ 0, what reflects the fact that correspondingly the point x0 becomes

an external boundary point of the region x < x0, hence no interaction is allowed to occur between points

x < x0 and points x > x0.
The effects of the inhomogeneities upon the functions GIðx; x0Þ, CIðxÞ can be discussed in an analogous

way as for g. For instance, the plots of CAðxÞ, CBðxÞ for a piecewise homogeneous one-dimensional domain

06 x6 L with gA ¼ 1 for 06 x < L=2 and gB 6 1 for L=2 < x6L, are depicted in Fig. 4 for a few gB values

and for the bi-exponential function as primitive influence function.

5.2. A few typical cases

Hereafter, a few typical cases are discussed in order to verify whether the equivalent distance as defined

previously may constitute an effective analytical tool capable to correctly account––at least qualitatively––

for the macroscopic attenuation effects in the material system, even in a limit condition in which one of the

subdomains degrades till complete failure.
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In Fig. 5(a), the (flat) internal boundary surface SAB devides V into two (simply connected) subdomains,
V ¼ VA [ VB, each being homogeneous. For more generality, a decohesion crack is supposed to exist in SAB.
In order to apply (43) to a pair of fixed points x 2 VA and x0 2 VB, it is sufficient to consider only paths

Pðx; x0Þ everyone intersecting SAB at a single point. Then, by (42) one can write
h ¼ 1þ C
j gA � gB jffiffiffiffiffiffiffiffiffiffi

gAgB
p ; ð45Þ
which––for C considered homogeneous––remains constant for all such paths Pðx; x0Þ. Therefore, one has
from (43):
reqðx; x0Þ ¼ 1

�
þ C

j gA � gB jffiffiffiffiffiffiffiffiffiffi
gAgB

p
�
rðx; x0Þ; ð46Þ
where rðx; x0Þ is the geodetical distance (44), (coinciding with the Euclidean distance for the pair ðx; x0Þ on
the left of Fig. 5(a)).

Always with reference to Fig. 5(a), note that the attenuation factor (45) depends on the ratio gA=gB. In
the case gA ¼ gB, it is h ¼ 1, in which case reqðx; x0Þ ¼ rðx; x0Þ for any pair ðx; x0Þ in the homogeneous V .
Also, on letting gB ! 0 while gA remains fixed, then h ! 1, reqðx; x0Þ ! 1, hence gðx; x0Þ ¼ �gðreq=‘Þ ! 0
8x 2 VA and 8x0 2 VB; that is––since, at the limit, SAB becomes an external boundary surface––no interac-
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tions are allowed to occur between points x 2 VA and points x0 external to it. The plots of Fig. 5(b) represent

each the attenuation factor (45) as a function of the ratio gA=gB varying in the interval 16 gA=gB < 1 and

for a particular C value.

In Fig. 6(a), again V ¼ VA [ VB, but VB is thought of as a (convex) inclusion. A pair ðx; x0Þ 2 VA such that

the straight path P0ðx; x0Þ (whose length is r0ðx; x0Þ ¼j x0 � x j) intersects SAB is considered. In order to

apply (43), it is sufficient considering only two classes of paths Pðx; x0Þ, that is, the paths Pinðx; x0Þ
intersecting SAB into two points only, and those, Pcvðx; x0Þ, that circumvent the inclusion. Then, one has

from (41) and (42):
(a

Fig. 6.

functio
paðx; x0Þ ¼ 1

�
þ 2C

j gA � gB jffiffiffiffiffiffiffiffiffiffi
gAgB

p
�
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Homogeneous domain VA with an (homogeneous) inclusion VB: (a) geometrical sketch; (b) plot of the equivalent distance req as a
n of the ratio t ¼ gA=gB of the elastic moduli for a surface coefficient C ¼ 1.
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for any path, Pinðx; x0Þ, intersecting SAB (m ¼ 2, C1 ¼ C2 ¼ C assumed constant), but
paðx; x0Þ ¼ pðx; x0Þ ð48Þ
for any path, Pcvðx; x0Þ, circumventing the inclusion. Obviously the minimum of paðx; x0Þ of (47), or (48), in
the set fPcvðx; x0Þg coincides with the geodetical distance rcvðx; x0Þ when VB is considered as a cavity

ðgB ¼ 0Þ, Fig. 6(a). It follows that the equivalent distance is
reqðx; x0Þ ¼ 1

�
þ 2C

j gA � gB jffiffiffiffiffiffiffiffiffiffi
gAgB

p
�
r0ðx; x0Þ ð49Þ
whenever hr0 < rcv, that is
j gA � gB jffiffiffiffiffiffiffiffiffiffi
gAgB

p < h :¼ 1

2C
rcvðx; x0Þ
r0ðx; x0Þ

�
� 1

�
; ð50Þ
but
reqðx; x0Þ ¼ rcvðx; x0Þ ð51Þ
whenever (50) is not satisfied.

The plot of Fig. 6(b) represents reqðx; x0Þ of (49) and (51) as a function of the ratio t ¼ gA=gB varying in
the interval 16 t < 1, which is obtained by letting gB ! 0 while gA is taken fixed. The equivalent distance

increases monotonically from r0 to rcv for gB decreasing from the gA value ðt ¼ 1Þ to some �gB,
ðt ¼ �t ¼ gA=�gBÞ, but remains constant and equal to rcvðx; x0Þ for gB smaller than �gB ðt > �tÞ. The �gB value

can be easily found by writing (50) as an equality and then solving the quadratic equation
ðt � 1Þ2 � h2t ¼ 0: ð52Þ
This admits two positive roots, one ð�tÞ greater, the other ð��tÞ smaller, than unity, that is:
�t :¼ gA
�gB

¼ 1þ 1

2
h2 þ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
h2

r
> 1; ð�gB < gAÞ; ð53Þ
��t :¼
��gB
gA

¼ 1þ 1

2
h2 � h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
h2

r
< 1; ð��gB > gAÞ: ð54Þ
It is worth noting that––always in the hypothesis that C is homogeneous––the equivalent distance reqðx; x0Þ
under discussion, Fig. 6(b), is independent of the size and shape of the inclusion as far as the inclusion is

sufficiently stiff (gB > �gB, t < �t), whereas for smaller values of gB (t > �t), req ¼ rcv depends on the size and

shape of the inclusion. The case envisioned here is similar to the one encountered in practice when a narrow

region of a body degrades with increasing the loading till the formation of a crack with surface separation.

Also, note that were the inclusion VB of Fig. 6(a) shaped as a layer traversing the whole body V , then
rcv ¼ 1, h ¼ 1, hence Eq. (49) would be always valid.

The attenuation effects due to the inhomogeneity imply that, in a domain, V ¼ VA [ VB, Fig. 7(a), at
points x 2 VA sufficiently close to the internal boundary SAB, the influence sphere RðxÞ is modified in the part

exceeding SAB. In fact, the latter part of RðxÞ is substituted by a cup, locus of points x (N in Fig. 7(a)) such

that h j x0 � x j¼ R, where h ¼ 1þ C j gA � gB j = ffiffiffiffiffiffiffiffiffiffi
gAgB

p
. Since h increases with decreasing gB while gA is

fixed, and h ! 1 for gB ! 0, also considered that x0 has to lie in VB, follows that at the limit the influence

region coincides with RðxÞ deprived by its part external to SAB, Fig. 7(b).
Note that, in the limit condition depicted in Fig. 7(b), where gB ¼ 0, the equivalent distance between two

points of VB, say y and y0, equals the Euclidean distance j y0 � y j, hence gðy; y0Þ > 0; however the stress rðyÞ
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predicted by the material model is identically vanishing, as it has to be. In fact, by Eq. (33), one can write

with reference to Fig. 7(b):
rðyÞ jVB¼ ½DB � aDACAðyÞ � aDBCBðyÞ� : eðyÞ þ a
Z
V
½DAGAðy; x0Þ þDBGBðy; x0Þ� : eðx0ÞdV 0: ð55Þ
Since, in the limit condition under consideration, it is DB ¼ 0, gðy; zÞ ¼ 0 8z 2 VA, hence by (29) and (31),

CAðyÞ ¼ 0, GAðy; x0Þ ¼ 0 8x0 2 V , it follows that rðyÞ ¼ 0 8y 2 VB.
Other special cases may still be considered, but those previously discussed seem to be sufficient to assess

the effectiveness of the equivalent distance as a means to account––through the attenuation function
gðx; x0Þ ¼ �gðreq=‘Þ––for the macroscopic long distance interactions in a nonlocal inhomogeneous material,

at least as for their qualitative features.

This section is concluded observing that several concepts of the present theory and shown by the

sketches of Figs. 4 and 5 are surprisingly similar to concepts of common use within a computational

mechanics context as the moving least-square reproducing kernel methods (Liu et al., 1997) and the

meshless methods (Belytschko et al., 1996). Since these methods make use of an integral formula with a

kernel having a finite support like in the nonlocal constitutive model, similar (macroscopic) boundary

surface effects arise. As a matter of facts, the concepts of ‘‘visibility’’ and ‘‘diffraction’’ used in the com-
putational mechanics context (Belytschko et al., 1996) are equivalent to the concept of ‘‘geodetical dis-

tance’’ employed in the context of nonlocal elasticity (Polizzotto, 2001), as well as to the more general

concept of ‘‘equivalent distance’’ herein proposed.
6. Numerical application

An elastic bar of length L and unit cross-section, clamped at the end section x ¼ 0 and subjected to a

given displacement �u at the end section x ¼ L, is considered. The bar is piecewise homogeneous, with Young

modulus EðxÞ ¼ gE0 for 06 x < L=2 and EðxÞ ¼ E0 for L=2 < x6 L, Fig. 8(a). The one-dimensional version
of Eq. (33) has been employed with a bi-exponential influence function, i.e. �gðreq=‘Þ ¼ ð1=2‘Þ expð�req=‘Þ,
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‘ ¼ 2 cm, R ¼ 12 cm, used as a primitive influence function. The data are: E0 ¼ 21� 104 MPa, L ¼ 100 cm,
�u ¼ 0:2 cm.

Since the stress r is uniform by equilibrium, the integral equation to solve can be written as
½1� aUðxÞ�xðxÞ � a
Z l

0

F ðx; x0Þxðx0Þdx0 ¼ 1; ð06 x6LÞ; ð56Þ
where
F ðx; x0Þ :¼ gGAðx; x0Þ þ GBðx; x0Þ; ð57Þ

UðxÞ :¼ gCAðxÞ þ CBðxÞ; ð58Þ

xðxÞ :¼ E0

r
eðxÞ: ð59Þ
Eq. (56) is a Fredholm integral equation of second kind, which is solved numerically to obtain xðxÞ. Then,
by the boundary condition uðLÞ ¼ �u, one has from (59):



Table 1

Stress responses of the bar in Fig. 8

g Stress r [MPa]

1.0 420.00

0.7 346.06

0.4 240.52

0.1 77.14

0.0 0.0
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r ¼ E0�uR L
0
xðxÞdx

: ð60Þ
Eq. (56), solved with a ¼ �1, C ¼ 2 and with different values of g, provides the strain profiles

eðxÞ ¼ rxðxÞ=E0 plotted in Fig. 8(b). The corresponding displacement responses are also reported in

Fig. 8(c), whereas the related stress values are shown in Table 1. The following is noted:

(a) For g ¼ 1, as expected, the solution coincides with the local type solution with e ¼ �u=L ¼ 2� 10�3 cm

and r ¼ E0�u=L ¼ 420 MPa.

(b) For g ¼ 0, the solution obtained interprets the limit idealized condition in which the left half bar has

vanishing stiffness and undergoes a uniform strain 2�u=L ¼ 4� 10�3 cm at zero stress, whereas the right
half bar displaces rigidly by the imposed amount �u ¼ 0:2 cm. The strain profile is piecewise constant

with zero strain in the right half bar.

(c) For intermediate values of g, 0 < g < 1, two extreme bar portions of equal length stretch uniformly at

different strain values, whereas in the remaining central portion (the length of which is the shorter, the

smaller g) the strain e varies continuously between the extreme values.

Other negative values of a have been used, with no remarkable differences in the numerical results. With a

positive a value, numerical instability problems arise from the middle section discontinuity; such patho-
logical behaviour of the solution procedure emerges also near the end sections making use of the Eringen-

type model (34), ða ¼ 1Þ. These numerical instability features tend to become modest with ‘ sufficiently small.
7. Conclusions

A two-component local/nonlocal constitutive model for (macroscopically) inhomogeneous elastic

materials (with constant internal length) has been proposed, in which the stress is the superposition of the

local stress and of a nonlocal contribution functional of the strain difference instead of the strain. Such a

model naturally satisfies the condition that the predicted stress equals the local stress whenever the strain

field is uniform, as usually required for a phenomenological constitutive elastic model. This nonlocal stress–

strain law has been derived as the state equation associated with a suitable Helmholtz free energy for
inhomogeneous elastic material in isothermal conditions. The case of major interest addressed here is that of

a piecewise homogeneous material with two or more homogeneous subregions. A more general thermo-

dynamic treatment of nonlocal inhomogeneous materials is the subject of an ongoing research.

The concept of equivalent distance, reqðx; x0Þ, has been introduced, which exceeds the Euclidean, or

geodetical, distance rðx; x0Þ, and the excess distance aims at taking into account the attenuation effects due

to the inhomogeneities. These inhomogenities are related to the modulus jumps at the points where the path

joining x and x0 intersects the internal boundary and to this purpose a suitable scalar measure of the

material moduli tensor has been introduced. In the absence of available experimental data, a definition of
reqðx; x0Þ has been heuristically suggested, which seems suitable for a satisfactory phenomenological
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description of the material constitutive behaviour, at least from the qualitative point of view. This definition

of req has been discussed in relation to various typical cases that can occur in practice, but obviously further

investigations are necessary.

It has been shown that the proposed nonlocal constitutive model can also be considered derivable from
the Eringen nonlocal elasticity model through a symmetry-saving enhancement procedure. Indeed, a

redistribution process of the local stress has been envisioned as a macroscopic long distance phenomenon

promoted by nonlocality; at the points, likely close to the boundary surface, where this stress redistribution

cannot be complete, the nonredistributed local stress has to be considered as a correction local-type con-

stitutive component to be added to the nonlocal one at the respective points.

The proposed constitutive model possesses, besides the elastic moduli and the internal length ‘, an
additional material constant ðaÞ, which controls the volume fractions of the local/nonlocal constitutive

components. It has been suggested to choose this a in such a way that the solution procedure be numerically
stable. More general considerations based on the convexity of the Helmholtz free energy potential in a

suitable functional space should be possible in order to assess an interval of admissible values for a, but this
point has been left open to future research work.

Themodel has a strong formal similarity with the Vermeer and Brinkgreve (1994) model, of which it can be

considered an improved version extended to inhomogeneous materials. In the case of homogeneous material,

and at points located at a distance from the boundary surface larger than the influence distance, the proposed

model coincides with the Vermeer–Brinkgreve�s with a as the related characteristic material constant.

A piecewise homogeneous bar structure, fixed at one end and subjected to a given displacement at the
other end, has been addressed, for which the numerical solution procedure exhibits no pathological

behaviour, provided the a coefficient is taken with a negative value. Different decreasing values of the

Young modulus have been considered in the half bar adjacent to the fixed end: from the value corre-

sponding to the fully homogeneous bar condition, to the zero value pertaining to the limit condition in

which the less stiff half bar is completely degraded and thus the bar reduces to only the other half portion

displacing as a rigid body at zero stress. A meaningful solution has been obtained in every degraded bar

condition, including the idealized failure condition. This result can be interpreted as an assessment of the

consistency of the proposed equivalent distance concept.
A limitation of the present nonlocal constitutive model is the assumption of homogeneous internal

length. Extensions to materials with inhomogeneous internal length are of practical interest. Another

limitation of the proposed model is that it requires, besides the primitive influence function, also a weighed

influence function. Furthermore, the concept of equivalent distance, having a basic role in the model, turns

out to be more elaborated than that of Euclidean, or even geodetical, distance. Hence, the proposed model

leads to an increase of the computational burden; however, a judgement over these computational aspects

require further numerical investigations with multi-dimensional examples.

All this will be the subject of subsequent research work. Extensions to other constitutive models
(plasticity, damage) are under study.
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